Saved Bookmarks
| 1. |
Sin^-1(1+x^2/1+x^2) |
|
Answer» y=sin(1-x^2)/(1+x^2) Let x=tanA dx/dA=sec^2A=1+tan^2A dx/dA=1+x^2………………..(1) y=sin[(1-tan^2A)/(1+tan^2A)] y=sin(cos2A) dy/dA=cos(cos2A).(-2sin2A) =-2.cos[(1-tan^2A)/(1+tan^2A)].[2tanA/(1+tan^2A)] dy/dA=-2[2x/(1+x^2)].cos[(1-x^2)/(1+x^2)] dy/dA=-4x/(1+x^2).cos[(1-x^2)/(1-x^2)]………(2) Divide eq.(2)by (1) dy/dA÷dx/dA=-4x/(1+x^2).cos[(1-x^2)/(1+x^2)] ÷(1+x^2). Therefore, Answer = dy/dx={-4x/(1+x^2)^2}.cos{(1-x^2)/(1+x^2)} |
|