1.

Simplify: \({\left[ {\left( {1 - \;\frac{1}{2}} \right)\left( {1 - \;\frac{1}{3}} \right)\left( {1 - \;\frac{1}{4}} \right)\left( {1 - \;\frac{1}{5}} \right) \ldots \ldots ..\left( {1 - \;\frac{1}{{100}}} \right)} \right]^{ - 0.5}} = \;?\)1. 12. 103. 0.14. 100

Answer» Correct Answer - Option 2 : 10

We are given the following equation:

\({\left[ {\left( {1 - \;\frac{1}{2}} \right)\left( {1 - \;\frac{1}{3}} \right)\left( {1 - \;\frac{1}{4}} \right)\left( {1 - \;\frac{1}{5}} \right) \ldots \ldots ..\left( {1 - \;\frac{1}{{100}}} \right)} \right]^{ - 0.5}} = \;?\)

⇒ [(1/2) × (2/3) × (3/4) × (4/5) × .................. × (99/100)]–0.5 = ?

In this equation, each denominator of previous term will be cancelled out by the numerator of the next term.

Hence, we obtain:

⇒ [1 × (1/100)]–0.5

⇒ (100)0.5

⇒ 10

∴ \({\left[ {\left( {1 - \;\frac{1}{2}} \right)\left( {1 - \;\frac{1}{3}} \right)\left( {1 - \;\frac{1}{4}} \right)\left( {1 - \;\frac{1}{5}} \right) \ldots \ldots ..\left( {1 - \;\frac{1}{{100}}} \right)} \right]^{ - 0.5}} = \;10\)



Discussion

No Comment Found

Related InterviewSolutions