1.

Simplify \(\frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \div \left( {\frac{5}{6} \times \frac{{12}}{{15}} + \frac{1}{4}} \right) + \frac{5}{7} \div \frac{{11}}{{13}}{\rm{of}}\frac{{13}}{7}\)1). 10/112). 12/113). 143/634). 3 2/9

Answer»

The key is to use the BODMAS Sequence: Brackets Of Division Multiplication Addition Subtraction.

Solving ACCORDINGLY,

$(\begin{ARRAY}{l}\frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \DIV \left( {\frac{5}{6} \times \frac{{12}}{{15}} + \frac{1}{4}} \right) + \frac{5}{7} \div \frac{{11}}{{13}}{\rm{of\;}}\frac{{13}}{7}\\ = \frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \div \left( {\frac{2}{3} + \frac{1}{4}} \right) + \frac{5}{7} \div \frac{{11}}{{13}}{\rm{of\;}}\frac{{13}}{7}\\ = \frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \div \frac{{11}}{{12}} + \frac{5}{7} \div \left( {\frac{{11}}{{13}} \times \frac{{13}}{7}} \right)\\ = \frac{{1\frac{7}{{12}}}}{{3\frac{4}{5}}} \div \frac{{11}}{{12}} + \frac{5}{7} \div \frac{{11}}{7}\\ = \frac{{\frac{{19}}{{12}}}}{{\frac{{19}}{5}}} \div \frac{{11}}{{12}} + \frac{5}{7} \div \frac{{11}}{7}\\ = \frac{5}{{12}} \times \frac{{12}}{{11}} + \frac{5}{7} \times \frac{7}{{11}}\\ = \frac{5}{{11}} + \frac{5}{{11}}\END{array})$

= 10/11


Discussion

No Comment Found