1.

Simplify:3√2/√3 + √6 - 4√3/√6+√2 + √6/√2 + √3\(\frac {3\sqrt2}{\sqrt3+\sqrt6} - \frac {4\sqrt3}{\sqrt6+\sqrt2} + \frac {\sqrt6}{\sqrt2+\sqrt3} \)

Answer»

\(\frac {3\sqrt2}{\sqrt3+\sqrt6} - \frac {4\sqrt3}{\sqrt6+\sqrt2} + \frac {\sqrt6}{\sqrt2+\sqrt3} \)

\(\frac {3\sqrt2(\sqrt3 -\sqrt6)}{(\sqrt3+\sqrt6)(\sqrt3-\sqrt6)} -\frac {4\sqrt3(\sqrt6 -\sqrt2)}{(\sqrt6+\sqrt2)(\sqrt6-\sqrt2)} +\frac {\sqrt6(\sqrt2 -\sqrt3)}{(\sqrt2+\sqrt3)(\sqrt2-\sqrt3)}\) 

\(\frac {3\sqrt6 - 6\sqrt3}{3-6} -\frac {12\sqrt2 - 4\sqrt6}{6-2} +\frac {2\sqrt3 - 3\sqrt2}{2-3} \) 

\(\frac {3\sqrt6 + 6\sqrt3}{3} +\frac {4\sqrt6 - 12\sqrt2}{4} +\frac {3\sqrt2 - 2\sqrt3}{1} \) 

=  \(​​\frac {-12\sqrt6 + 24\sqrt3 + 12\sqrt6 - 36\sqrt2 + 36\sqrt2 - 24\sqrt3}{12} = \frac 0{12} =0\)



Discussion

No Comment Found

Related InterviewSolutions