| 1. |
Show that the points (3, -2), (1, 0), (-1, -2) and (1, -4) are con – cyclic. |
|
Answer» Given: The points (3, -2), (1, 0), (-1, -2) and (1, -4) Let us assume the circle passes through the points A, B, C. So by using the standard form of the equation of the circle: x2 + y2 + 2ax + 2by + c = 0….. (1) Substitute the points A (3, – 2) in equation (1), we get, 32 + (-2)2 + 2a(3) + 2b(-2) + c = 0 9 + 4 + 6a – 4b + c = 0 6a – 4b + c + 13 = 0….. (2) Substitute the points B (1, 0) in equation (1), we get, 12 + 02 + 2a(1) + 2b(0) + c = 0 1 + 2a + c = 0 ……- (3) Substitute the points C (-1, -2) in equation (1), we get, (- 1)2 + (- 2)2 + 2a(- 1) + 2b(- 2) + c = 0 1 + 4 – 2a – 4b + c = 0 5 – 2a – 4b + c = 0 2a + 4b – c – 5 = 0….. (4) Upon simplifying the equations (2), (3) and (4) we get, a = – 1, b = 2 and c = 1 Substituting the values of a, b, c in equation (1), we get x2 + y2 + 2(- 1)x + 2(2)y + 1 = 0 x2 + y2 – 2x + 4y + 1 = 0 ….. (5) Now by substituting the point D (1, -4) in equation (5) we get, 12 + (- 4)2 – 2(1) + 4(- 4) + 1 1 + 16 – 2 – 16 + 1 0 ∴ The points (3, -2), (1, 0), (-1, -2), (1, -4) are con – cyclic. |
|