1.

Show that the motion of a particle represented by y= sin omega t- cos omega t is simple harmonic with a period of (2pi)/(omega).

Answer»

SOLUTION :Displacement `y= sin omega t - cos omega t`
`therefore y= sqrt(2) [(1)/(2) sin omega t- (1)/(sqrt(2)) cos omega t]`
`therefore y= sqrt(2) [cos (pi)/(4)sin omega t - sin (pi)/(4) cos omega t]`
`therefore y= sqrt(2) sin (omega t-(pi)/(4))`
comparing this euqation with general EQUATION of SHM `y= A sin (omega t + phi)`,
Amplitude A= 2 unit
ANGULAR frequency, `omega = (2pi)/(T)`
`therefore T= (2pi)/(omega)`
`therefore omega = (2pi)/(T)`
`therefore T= (2pi)/(omega)`
Given function represent SHM with a periodic time `T= (2pi)/(omega)`.


Discussion

No Comment Found