Saved Bookmarks
| 1. |
Show that the function `f: R->R` given by `f(x)=x^3`is injective. |
|
Answer» Here, `f(x) = x^3` `:. f(x_1) = x_1^3` `f(x_2) = x_2^3` Let `f(x_1) = f(x_2)` Then, `x_1^3 = x_2^3` `=>x_1 = x_2` So, if `f(x_1) = f(x_2),` then `x_1 = x_2`. `:.` Given function is injective(one-one). |
|