Saved Bookmarks
| 1. |
Show that the equation of the circle passing through (1, 1) and thepoints of intersection of the circles `x^2+y^2+13 x-13 y=0`and `2x^2+2y^2+4x-7y-25=0`is `4x^2+4y^2+30 x-13 y-25=0.`A. `4x^(2)+4y^(2)-30x-10y=25`B. `4x^(2)+4y^(2)+30x-13y-25=0`C. `4x^(2)+4y^(2)+17x-10y-25=0`D. None of the above |
|
Answer» Correct Answer - B The required equation of circle is `(x^(2)+y^(2)+13x-3y)+lambda(11x+(1)/(2)y+(25)/(2))=0" "...(i)` Its passing through (1, 1), `rArr 12 + lambda(24)=0` `rArr lambda = (1)/(2)` On putting in Eq. (i) , we get `x^(2)+y^(2)+13x-3y-(11)/(2)x-(1)/(4)y-(25)/(4)=0` `rArr 4x^(2)+4y^(2)+52x-12y-22x-y-25=0` `rArr 4x^(2)+4y^(2)+30x-13y-25=0` |
|