Saved Bookmarks
| 1. |
Show that the equaion ` x ^(2) + y ^(2) - 6x + 4y - 36 = 0 ` represents a circle. Also, find its centre and radius. |
|
Answer» The given equation is ` x ^(2) + y ^(2) - 6x + 4y - 36 = 0` . This is of the form ` x ^(2) + y^(2) + 2gx + 2 fy + c= 0`, `" "` where ` 2g = - 6, 2f = 4 and c = - 36` ` therefore g = -3, f = 2 and c = - 36`. Hence, the given equation represents a circle. Centre of the circle `= (-g, -f ) = (3, - 2 )` Radius of the circle = ` sqrt ( g ^(2) + f ^(2) - c ) = sqrt (3 ^(2) + (-2 ) ^(2) + 36 ) = sqrt ( 49) = 7 ` units. |
|