1.

Show that if a and b are :(a). in the same direction then |a + b| = |a| +|b|.(b). in the opposite direction then |a − b| = |a| + |b|.

Answer»

(a) \(|\vec a+\vec b|\) = |a| + |b|

Taking R.H.S. square and solve

\(=\sqrt{a^2+b^2+2ab\,cos\theta}\)

a and b are same direction. so θ = 0°

\(=\sqrt{a^2+b^2+2ab\,cos\,0^\circ}\)

\(=\sqrt{a^2+b^2+2ab}\)

\(=\sqrt{(a+b)^2}\)

= |a| + |b|

R.H.S. = L.H.S.

(b) \(|\bar a-\bar b|\) = |a| + |b|

Taking R.H.S. and squaring both side

|a - b|2

\(=\sqrt{a^2+b^2-2ab\,cos\theta}\)

a vector and \(\vec b\) are opposite direction

θ = 180°

\(=\sqrt{a^2+b^2-2ab\,cos\,180^\circ}\)

\(=\sqrt{a^2+b^2-2ab\times-1}\)

\(=\sqrt{a^2+b^2+2ab}\)

\(=\sqrt{(a+b)^2}\)

= |a| + |b|

R.H.S. = L.H.S.



Discussion

No Comment Found

Related InterviewSolutions