1.

Q. One of the relation of the D.E. \( \frac{d x}{3 z-4 y}=\frac{d y}{4 x-2 z}=\frac{d z}{2 y-3 x} \), Using a set of multipliers \( x, y, z \) is

Answer»

\(\frac{dx}{3z-4y}\)=\(\frac{dy}{4x-2z}\)=\(\frac{dz}{2y-3x}\) = \(\frac{xdx+ydy+zdz}{(3xz-4xy)+(4xy-2yx)+(2yz-3xz)}\)  

⇒ \(\frac{dx}{3z-4y}\)=\(\frac{dy}{4x-2z}\)=\(\frac{dz}{2y-3x}\) = \(\frac{xdx+ydy+zdz}{0}\)

⇒ xdx + ydy + zdx = 0

⇒ ∫(xdx + ydy + zdz) = \(\frac{c}{2}\)

Where \(\frac{c}{2}\) is an integral constant.

⇒ \(\frac{x^2}{2}\)+\(\frac{y^2}{2}\)+\(\frac{z^2}{2}\) = \(\frac{c}{2}\)

⇒ x2 + y2 +z2 = c 

Hence,

The solution of given differential equation is x2 + y2 +z2 = c.



Discussion

No Comment Found

Related InterviewSolutions