1.

Prove the following:`tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]=(2b)/a`

Answer» Let `1/2cos^-1(a/b) = x`
Then, `a/b = cos2x->(1)`
Now,
`L.H.S. = tan(pi/4+1/2cos^-1(a/b))+tan(pi/4-1/2cos^-1(a/b))`
`=tan(pi/4+x)+tan(pi/4-x)`
`=(1+tanx)/(1-tanx)+(1-tanx)/(1+tanx)`
`=((1+tanx)^2+(1-tanx)^2)/(1-tan^2x)`
`=(1+tan^2x+2tanx+1+tan^2x-2tanx)/(1-tan^2x)`
`=(2(1+tan^2x))/(1-tan^2x)`
We know, `tan^2x = sec^2x-1`
So, our expression becomes,
`=(2sec^2x)/(2-sec^2x)`
`=(2/cos^2x)/(2-1/cos^2x)`
`=2/(2cos^2x-1)`
`=2/(cos2x)`
`=(2)/(a/b)` (From (1))
`=(2b)/a = R.H.S.`


Discussion

No Comment Found

Related InterviewSolutions