1.

Prove the following:\(\frac{sin^3\theta+cos^3\theta}{sin\theta+cos\theta} + \frac{sin^3\theta-cos^3\theta}{sin\theta-cos\theta}=2\)sin3θ+cos3θ/sinθ+cosθ +sin3θ-cos3θ/sinθ-cosθ =2

Answer»

=2(\(\frac{sin^2\theta}{cos^2\theta}+\frac{1}{cos^2\theta}\))

= 2(\(\frac{sin^2\theta+1}{cos^2\theta}\))

=2 (\(\frac{1+ sin^2\theta}{1-sin^2\theta}\))

=R.H.S

= (sin2 θ + cos2 θ – sin θ cos θ) + (sin2 θ + cos2 θ + sinθ cosθ) 

= 2 (sin2 θ + cos2 θ) 

= 2(1) 

= 2 = R.H.S



Discussion

No Comment Found