1.

Prove the following:`cos^(-1)((12)/(13))+sin^(-1)(3/5)=sin^(-1)((56)/(65))`

Answer» Let `cos^-1(12/13) = x`
Then, `cosx = 12/13`
`:. sinx = sqrt(1-(12/13)^2) = sqrt(25/169) = 5/13`
`:. x = sin^-1(5/13)`
`:. L.H.S. = cos^-1(12/13) +sin^-1(3/5) = sin^-1(5/13) +sin^-1(3/5)`
We know, `sin^-1A+sin^-1B = sin^-1(Asqrt(1-B^2)+Bsqrt(1-A^2))`
So,our expression becomes,
`= sin^-1(5/13sqrt(1-(3/5)^2)+3/5sqrt(1-(5/13)^2))`
`=sin^-1(5/13*4/5+3/5*12/13)`
`=sin^-1(4/13+36/65)`
`=sin^-1(56/65) = R.H.S.`


Discussion

No Comment Found

Related InterviewSolutions