1.

Prove that `x^3 + x^2 + x` is factor of `(x+1)^n - x^n -1` where n is odd integer greater than 3, but not a multiple of 3.

Answer» `x^3+x^2+x=(x+1)-x^2-1`
`x[1+x+x^2]`
`1+w+w^2=0`
`x(x-w)(x-w^2)`
When x=0
`(0+1)^n-(0)^n-1=0`
when x=w
`(1+w)^n-w^n-1`
`=(-w^2)^n-w^n-1`
`=(-w)^n-(w)^n-(w^3)^n`
`1+w+w^2=0`
`1+w^2+w^(2n)=0`
Only when n is odd n is not multiple of 3
`(-w)^n-(w^2)^n-1`
n is odd.


Discussion

No Comment Found