Saved Bookmarks
| 1. |
Prove that tan15°+cot15°=4. |
|
Answer» L.h.stan15+cot15=>(tan15.tan15+1)/tan15 =>(sec15.sec15 )/tan15=>sec15/sin15 =>1/(sin15.cos15)=>2/sin30=>4. (Proven ) tan15°+cot15°=sin15°/cos15°+cos15°/sin15°=sin^215°+cos^215°/cos15°×sin15° (L.C.M)=1/cos15°×sin15°=1/cos(45°—30°)×sin(45°—30°)Now on further eleborating it, you will get your desired answer. |
|