1.

Prove that `tan^-1((cosx)/(1+sinx))=pi/4-x/2, x in (-pi/2,pi/2)`

Answer» Here, we will use the folowing formulas:
`cos2x = cos^2x-sin^2x`
`sin2x = 2sinxcosx`
`tan(pi/4-x) = (1-tanx)/(1+tanx)`
Now,
`L.H.S. = tan^-1(cosx/(1+sinx))`
`= tan^-1((cos^2(x/2)-sin^2(x/2))/(cos^2(x/2)+sin^2(x/2)+2sin(x/2)cos(x/2)))`
`=tan^-1(((cos(x/2)+sin(x/2))(cos(x/2)-sin(x/2)))/(cos(x/2)+sin(x/2))^2)`
`=tan^-1((cos(x/2)-sin(x/2))/(cos(x/2)+sin(x/2)))`
`=tan^-1((1-sin(x/2)/(cos(x/2)))/(1+sin(x/2)/cos(x/2)))`
`=tan^-1((1-tan(x/2))/(1+tan(x/2)))`
`=tan^-1(tan(pi/4-x/2))`
`=(pi/4-x/2) = R.H.S.`


Discussion

No Comment Found

Related InterviewSolutions