Saved Bookmarks
| 1. |
Prove that (nC0 + nC1) (nC1 + nC2)(nC2 + nC3)......(nCn-1 + nCn) = \(\frac{(n+1)^n}{n!}\)(nC1.nC2.nC3......nCn) |
|
Answer» (nC0 + nC1) (nC1 + nC2)(nC2 + nC3)......(nCn-1 + nCn) = n+1C1 + n+1C2 + n+1C3....n+1Cn = \(\frac{n+1}1\times\frac{(n+1)n}2\times\frac{(n+1)(n)(n-1)}{3!}....\times\frac{(n+1)}{1!}\) = (n+1)n\((\frac{n}{n}\times\frac{n(n-1)}{2(n-1)}\times\frac{n(n-1)(n-2)}{3!(n-2)}....\times1)\) = (n + 1)n x \(\frac{1}{n(n-1)(n-2)....}\times(n\times\frac{n(n-1)}2\times\frac{n(n-1)(n-2)}{3!}\times....\times1)\) = \(\frac{(n+1)^n}{n!}\)(nC1.nC2.nC3......nCn) Hence Proved |
|