1.

Prove that \( \int_{0}^{\pi / 2} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} \)

Answer»

Let x2 = y ⇒ 2x dx = dy

⇒ dx = dy/dx = dy/2√y

\(\therefore\int\limits_0^{\infty}e^{-x^2}dx\) = \(\int\limits_0^{\infty}\frac1{2\sqrt y}e^{-y}dy\)\(=\frac12\int\limits_0^{\infty}y^{\frac{-1}2}e^{-y}dy\) 

\(=\frac12\int\limits_0^{\infty}y^{\frac12-1}e^{-y}dy = \frac{\Gamma(\frac12)}2\) \((\because\int\limits_0^{\infty}x^{n-1}e^{-x}dx=\Gamma(x))\)

\(=\frac{\sqrt\pi}2(\because\Gamma(\frac12)=\sqrt\pi)^2\)



Discussion

No Comment Found

Related InterviewSolutions