| 1. |
Prove that: \(cos\frac{\pi}{5}cos\frac{2\pi}{5}cos\frac{4\pi}{5}cos\frac{8\pi}{5}\) = \(\frac{-1}{16}\). |
|
Answer» Let P = \(cos\frac{\pi}{5}cos\frac{2\pi}{5}cos\frac{4\pi}{5}cos\frac{8\pi}{5}\) ⇒ P \(sin\frac{\pi}{5}\) = \(sin\frac{\pi}{5}\) \(cos\frac{\pi}{5}\) \(cos\frac{2\pi}{5}\) \(cos\frac{4\pi}{5}\) \(cos\frac{8\pi}{5}\) ⇒ P \(sin\frac{\pi}{5}\) = \(\frac{1}{2}\)\(sin\frac{2\pi}{5}\) \(cos\frac{2\pi}{5}\) \(cos\frac{4\pi}{5}\) \(cos\frac{8\pi}{5}\) [∵ sin 2A = 2 sin A cos A] ⇒ P \(sin\frac{\pi}{5}\) = \(\frac{1}{4}[2sin(\frac{2\pi}{5})cos(\frac{2\pi}{5})]cos(\frac{4\pi}{5})cos(\frac{8\pi}{5})\) ⇒ \(sin\frac{\pi}{5}\) = \(\frac{1}{4}[sin(\frac{4\pi}{5})cos(\frac{4\pi}{5})]cos(\frac{8\pi}{5})\) ⇒ P \(sin\frac{\pi}{5}\) = \(\frac{1}{8}[2sin(\frac{4\pi}{5})cos(\frac{4\pi}{5})]cos(\frac{8\pi}{5})\) ⇒ P \(sin\frac{\pi}{5}\) =\(\frac{1}{8}sin(\frac{8\pi}{5})cos(\frac{8\pi}{5})\) ⇒ P \(sin\frac{\pi}{5}\) =\(\frac{1}{16}sin(\frac{16\pi}{5})\) ⇒ P \(sin\frac{\pi}{5}\) = \(\frac{1}{16}sin(3\pi+\frac{\pi}{5})\) ⇒ P \(sin\frac{\pi}{5}\) = \(-\frac{1}{16}sin(\frac{\pi}{5})\) ⇒ P =\(-\frac{1}{16}\) ∴ \(cos\frac{\pi}{5}cos\frac{2\pi}{5}cos\frac{4\pi}{5}cos\frac{8\pi}{5}\) = \(-\frac{1}{16}\) Hence Proved |
|