1.

Prove that 1/ cosec x + cot x – 1/sin x = 1/sin x –1/ cosec x–cot x

Answer»

In order to show that,

\(\frac1{(coses\,x+cot\,x)}-\frac1{sin\,x}=\frac1{sin\,x}-\frac1{(coses\,x-cot\,x)}\)

it is sufficient to show

\(\frac1{coses\,x+cot\,x}+\frac1{(coses\,x-cot\,x)}=\frac1{sin\,x}+\frac1{sin\,x}\)

\(\Rightarrow\frac1{coses\,x+cot\,x}+\frac1{(coses\,x-cot\,x)}=\frac2{sin\,x}\;\;...(i)\)

Now, LHS of above is

\(\frac1{(coses\,x+cot\,x)}+\frac1{(coses\,x-cot\,x)}\) \(=\frac{(coses\,x-cot\,x)+(coses\,x+cot\,x)}{(coses\,x-cot\,x)(coses\,x+cot\,x)}\)

\(=\frac{2\,coses\,x}{coses^2x-cot^2x}\) [∵ (a+b)(a-b) = a2 - b2)

\(=\frac{2\,coses\,x}1=\frac2{sin\,x}\) = RHS of (i)

Hence, \(\frac1{(coses\,x+cot\,x)}+\frac1{(coses\,x-cot\,x)}=\frac1{sin\,x}+\frac1{sin\,x}\)

or \(\frac1{(coses\,x+cot\,x)}-\frac1{sin\,x}=\frac1{sin\,x}-\frac1{(coses\,x-cot\,x)}.\)



Discussion

No Comment Found

Related InterviewSolutions