Saved Bookmarks
| 1. |
Polar form of sqrt(3) + i is |
|
Answer» `-2(cos""(PI)/( 6)+isin""(pi)/(6))` `therefore""rcostheta= sqrt(3)` `""rsintheta=1` Squaring and ADDING the above two equations, we get `r^(2)cos^(2)theta+ r^(2)sin ^(2)theta=(sqrt(3))^(2) +(1)^(2)` ` rArr" " r^(2)(cos^(2)theta+sin^(2)theta) =3+1=4` `rArr""r^(2) =4""rArrr=2` Put `r`= 2 in the above two equations, `{:(,"",costheta=(sqrt(3))/(2)rArr costheta=30^(@)),(,and, sintheta=(1)/(2)rArrsintheta=sin30^(@)or sin150^(@)):}}` `rArr""theta=30^(@)=(pi)/(6)` then ` " "sqrt(3)+ i=2(cos""(pi)/( 6)+isin""(pi)/(6))` |
|