1.

On the circle with centre O, points A, B are such that OA = AB. A point C is located on the tangent at B to the circle such that A and C are on the opposite sides of the line OB and AB = BC. The line segment AC intersects the circle again at F. Then the ratio ∠BOF: ∠BOC is equal to:

Answer»

On the circle with centre O, points A, B are such that OA = AB. A point C is located on the tangent at B to the circle such that A and C are on the opposite sides of the line OB and AB = BC. The line segment AC intersects the circle again at F. Then the ratio BOF: BOC is equal to:






Discussion

No Comment Found