Saved Bookmarks
| 1. |
Observe the right triangle ABC, right angled at B, where AP = x units , PC = (x + 5 ) units and AB = 5 units as shown below . Find the length of PC : |
|
Answer» In ∆APB, ∠APB = 180 - 90 = 90° (Linear pair) So AP2 + BP2 = AB2 ⇒ x2 + BP2 = 25 ∴ BP = √(25 - x2) In ∆APB and ∆ABC ∠A = ∠A (Common) ∠ APB = ∠ABC (90° each) ∴ ∆APB ∼ ∆ABC (AA similarity) - (1) Similarly, ∆BPC ∼ ∆ABC (AA similarity) - (2) From (1) and (2) ∆APB ∼ ∆BPC ⇒ AP/BP = BP/PC ⇒ BP2 = AP × PC ⇒ 25 - x2 = x(5 + x) ⇒ (5 + x)(5 - x) = x(5 + x) ⇒ 5 - x = x ∴ 2x = 5 x = 2.5. PC = x + 5 = 7.5 units |
|