1.

O is a point on side PQ of a APQR such that PO = QO = RO, then(a) RS² = PR × QR(b) PR² + QR² = PQ²(c) QR² = QO² + RO²(d) PO² + RO² = PR²

Answer»

In ΔPQR , 

PO=OQ=RO (given) 

Now , in ΔPSR , 

PO=OR (given) 

∴∠1=∠P [Angles opposite to equal sides in a triangle are equal]

Similarly , in ∠ORQ , 

RO=OQ (given) 

∠Q=∠2 

Now , in ΔPQR , 

∠P+∠Q+∠PRQ=180

  [By Angle sum property of a triangle] 

⇒∠1+∠2+(∠1+∠2)=180

  ⇒2(∠1+∠2)=180

  ⇒∠1+∠2=90

  ⇒∠PRQ=90

By Pythagoras theorem , we have 

PQ2=QR2+PQ2

option B is correct



Discussion

No Comment Found

Related InterviewSolutions