1.

Number of integral values of `lambda` for which `x^2 + y^2 + 7x + (1-lambda)y + 5 = 0` represents the equation of a circle whose radius cannot exceed 5 is

Answer» Correct Answer - 10 values
Radius `le5`.
`sqrt(((lambda)/(2))^(2)+((1-lambda)/(2))^(2)-5)le5`
`implies 2lambda^(2)-2lambda-119le0`
`implies (1-sqrt(239))/(2)lelambdale(1+sqrt(239))/(2)`
`implies -7.2 lelambdale8.2 ` ( approximately)
`implies lambda=-7,-6,-5.....7,8` (1)
Also, we must have
`((lambda)/(2))^(2)+((1-lambda)/(2))^(2)-5ge0`
`implies 2lambda^(2)-2lambda-19ge0`
`implies lambdale(1-sqrt(39))/(2)`
or `lambdale(1+sqrt(39))/(2)` (2)
From (1) and (2) ,
`lambda = -7,-6,-5,-4,-3,4,5,6,7,8`


Discussion

No Comment Found

Related InterviewSolutions