Saved Bookmarks
| 1. |
Number \([ - \frac{{11}}{{20}},\;\frac{7}{{ - 15}},\;\frac{{17}}{{ - 30}}\;and - \frac{3}{{10}}]\) are written in descending order as1. \(\frac{{17}}{{ - 30}}\; > \; - \frac{{11}}{{20}}\; > \; - \frac{3}{{10}}\; > \;\frac{7}{{ - 15}}\)2. \( - \frac{3}{{10}}\; > \;\frac{7}{{ - 15}}\; > \; - \frac{{11}}{{20}}\; > \;\frac{{17}}{{ - 30}}\)3. \( - \frac{3}{{10}}\; > \; - \frac{{11}}{{20}}\; > \;\frac{7}{{ - 15}}\; > \;\frac{{17}}{{ - 30}}\)4. \( - \frac{{11}}{{20}}\; > \;\frac{{17}}{{ - 30}}\; > \; - \frac{3}{{10}}\; > \;\frac{7}{{ - 15}}\) |
|
Answer» Correct Answer - Option 2 : \( - \frac{3}{{10}}\; > \;\frac{7}{{ - 15}}\; > \; - \frac{{11}}{{20}}\; > \;\frac{{17}}{{ - 30}}\) Concept: First, find the LCM (Lowest Common Factor) of the given fraction. Then arranged it according to the given question. Given: \([ - \frac{{11}}{{20}},\;\frac{7}{{ - 15}},\;\frac{{17}}{{ - 30}}\;and - \frac{3}{{10}}]\) Calculation: LMC of the (20, 15, 30, 10) = 60 Multiply each fraction with the LCM i.e. 60 ⇒ - 11/20 × 60 = - 33 ⇒ - 7/15 × 60 = - 28 ⇒ - 17/30 × 60 = - 34 ⇒ - 3/10 × 60 = - 18 After arrange in decreasing order (descending order), We find that \( - \frac{3}{{10}}\; > \;\frac{7}{{ - 15}}\; > \; - \frac{{11}}{{20}}\; > \;\frac{{17}}{{ - 30}}\) |
|