| 1. |
Name one primary component consume of forest ecosystem name the following |
|
Answer» Answer: SOLUTION
:- \begin{gathered}\bf = > \frac{\red{ {9}^{n} \times {3}^{2} \times ( { {3}^{ \frac{ - n}{\cancel2} } })^{ - \cancel 2} - {27}^{n}}}{\red{ {3}^{3m} \times {2}^{3} }} = \frac{\red{1}}{\red{27}} \\ \\ \bf= > \frac{\red{( {3})^{2n} \times {(3)}^{2} \times {(3)}^{n} - ( {27})^{n} }}{\red{ ({3})^{3m} \times ({2})^{3} } } = \frac{\red{1}}{\red{27}} \end{gathered} => 3 3m ×2 3
9 n ×3 2 ×(3 2
−n
) − 2
−27 n
= 27 1
=> (3) 3m ×(2) 3
(3) 2n ×(3) 2 ×(3) n −(27) n
= 27 1
since, base are common ; i.e, (3) is common and they are multiplying, so there exponents will add such that : \begin{gathered}\bf = > \frac{\red{( {3})^{2n + 2 + n} - {(3)}^{3N}}}{\red{({3})^{m} \times ({2})^{3} }} = \frac{\red{1}}{\red{27}} \\ \\ \bf = > \frac{\red{ {(3)}^{3n + 2} - {(3)}^{3n} }}{ \red{{(3)}^{3m} \times {(2)}^{3} } } = \frac{\red{1}}{\red{27} }\end{gathered} => (3) m ×(2) 3
(3) 2n+2+n −(3) 3n
= 27 1
=> (3) 3m ×(2) 3
(3) 3n+2 −(3) 3n
= 27 1
now , take {(3)}^{3n}(3) 3n common from numerator! \begin{gathered}\bf = > \frac{\red{ {(3)}^{3n}( {3}^{2} - 1) }}{ \red{{(3)}^{3m} \times {(2)}^{3} }} = \frac{\red{1}}{\red{27}} \\ \\ \bf = > \frac{ \red{{(3)}^{3n}(9 - 1) }}{\red{ {(3)}^{3m} \times 8} } = \frac{\red{1}}{\red{27}} \\ \\ \bf = > \red{\frac{ {(3)}^{3n} \times \cancel8 }{ {(3)}^{3m} \times \cancel8}} = \red{\frac{1}{27} }\end{gathered} => (3) 3m ×(2) 3
(3) 3n (3 2 −1)
= 27 1
=> (3) 3m ×8 (3) 3n (9−1)
= 27 1
=> (3) 3m × 8
(3) 3n × 8
= 27 1
then, again (3) is common, but it is dividing, so exponents will subtract : \begin{gathered}\bf = > \red{{(\cancel3)}^{3n - 3m}} = \red{( {\cancel3)}^{ - 3}} \\ \\ \bf= > \red{ 3n - 3m = - 3}\end{gathered} =>( 3
) 3n−3m =( 3
) −3
=>3n−3m=−3
take 3 as common from LHS , \bf = > \red{3(n - m) = - 3}=>3(n−m)=−3 take 3 to RHS from LHS , as it's multiplying, so taking other side, it will divide ; \begin{gathered}\bf = > \red{n - m = - \frac{3}{3}} \\ \\ \bf = > \red{ n - m = - 1} \\ \\ \bf = > \red{\cancel - (m - n) = \cancel- 1} \\ \\ \bf = > \blue{\boxed{\huge{m - n = 1}}}\end{gathered} =>n−m=− 3 3
=>n−m=−1 => −
(m−n)= −
1 => m−n=1
★ HENCE PROVED !! ★ |
|