1.

limiting value of the equivalent conductance of the bacl2 baso4 and H2S o4 or xyz respectively The Infinite dilution of HCL and conductance at infinite dilution of HCL

Answer»

Correct option is (D) 1/2 (Y + Z - X)

\(\Lambda^0_{eq} (HCl) = \lambda ^0_{H^+} + \lambda^0_{Cl^-}\)

\(2 \times \Lambda^0_{eq} (HCl) = 2\lambda^0_{H^+} + 2\lambda^0_{Cl^-}\)

\(2 \times \Lambda^0_{eq} (HCl) = 2\lambda^0_{H^+} + \lambda ^0_{SO^{-2}_4}- \lambda ^0_{SO^{-2}_4}+2\lambda^0_{Cl^-} + \lambda^0_{Ba^{+2}} - \lambda^0_{Ba^{+2}}\)

\(2 \times \Lambda^0_{eq} (HCl) = \Lambda^0_{eq}(H_2SO_4) + \Lambda^0_{eq}(BaCl_2) - \Lambda^0_{eq}(BaSO_4) \)

\(2 \times \Lambda^0_{eq} (HCl) = Z + Y - X\)

\( \Lambda^0_{eq} (HCl) =\frac12( Z + Y - X)\)



Discussion

No Comment Found

Related InterviewSolutions