1.

\( \lim _{x \rightarrow 0^{+}}((x \cos x)+(x \log x)) \) equals(1) 1(2) 2(3) 3(4) 0

Answer»

Correct option is (4) 0

\(\lim\limits_{x\to 0^+} (x\, cos\, x + x\,log\, x)\)

\(= \lim\limits_{x\to 0^+} x\, cosx + \lim\limits _{x \to 0^+} x\, log x\)

\(= \lim\limits_{h\to 0}(0 + h)\, cos(0 + h) + \lim\limits_{x \to 0^+} \frac{log x}{\frac1x}\)   \(\left(\frac{\infty}{\infty}- case\right)\) 

\(= 0 \times cos0 + \lim\limits_{x\to 0^+} \cfrac{\frac1x}{\frac{-1}{x^2}}\)     (By using D.L.H. Rule)

\(= 0 + \lim\limits_{x\to 0 ^+}\)

\(= \lim\limits_{h\to 0}- (0 + h)\)

\(= -0\)

\(= 0\)



Discussion

No Comment Found

Related InterviewSolutions