1.

\( \lim _{x \rightarrow 0}\left(1+\tan ^{2} x\right)^{\frac{1}{x^{2}}} \) is e \( \frac{1}{e} \) 0 1

Answer»

\(\lim\limits_{x \to 0}\)(1 + tan2x)\(\frac1{x^2}\) (1\(\infty\) = case)

 = Exp {\(\lim\limits_{x \to 0}\)(1 + tan2x - 1) \(\frac1{x^2}\)}

 = Exp {\(\lim\limits_{x \to 0}\) \(\frac{tan^2x}{x^2}\)}

 = Exp {\(\lim\limits_{x \to 0}\)\((\frac{tan y}x)^2\)}

 = e (∵ \(\lim\limits_{x \to 0}\)\(\frac{tan x}x=1\))



Discussion

No Comment Found

Related InterviewSolutions