1.

lim x infty (1+ 1/x)^3x

Answer»

\(\lim\limits_{\mathrm x\to \infty}\)\(\left(1+\frac{1}{\mathrm x}\right)^{3\mathrm x}\)  [1type]

= Exp\(\left\{\lim\limits_{\mathrm x\to \infty}\frac{1}{\mathrm x}\times 3\mathrm x\right\}\)   \(\Big(\because \) If \(\lim\limits_{\mathrm x \to \infty}\)\(\left(f(\mathrm x)\right)^{g(\mathrm x)}\) = [1type] then \(\lim\limits_{\mathrm x \to \infty}\) \(\left(f(\mathrm x)\right)^{g(\mathrm x)}\) = Exp\(\left\{\lim\limits_{\mathrm x \to \infty}(f(\mathrm x)-1){g(\mathrm x)}\right\}\Big)\)

= Exp\(\left\{\lim\limits_{\mathrm x \to \infty}3\right\}\)

\(= e^3\)



Discussion

No Comment Found

Related InterviewSolutions