1.

Let z be a complex number such that |z| + z = 3 + i (Where `i=sqrt(-1))` Then ,|z| is equal toA. `sqrt(34)/3`B. `5/3`C. `sqrt(41)/4`D. `5/4`

Answer» Correct Answer - B
We have `|z|+z=+i`
Let z=x+iy
`therefore sqrt(x^2+y^2)+x+iy+3+i`
`rArr (x+sqrt(x^2+y^2))+iy=3+i`
`rArr x+sqrt(x^2+y^2)=3 and y=1`
Now , `sqrt(x^2+1)=3-x`
`rArr x^2+1=9-6x+x^2`
`rArr 6x=8 rArr x=4/3`
`therefore z=4/3+i`
`rArr |z|=sqrt(16/9)+1=sqrt(25/9) rArr |z|=5/3`


Discussion

No Comment Found

Related InterviewSolutions