1.

Let (x3+px2+2x−5)19(x2+qx−41)8(x4−x3+x−7)6=x97+391x96+a95x95+a94x94+⋯a1x+a0 be an identity, where p,q,a95,…,a0 are integers. Then smallest positive value of p is

Answer» Let (x3+px2+2x5)19(x2+qx41)8(x4x3+x7)6=x97+391x96+a95x95+a94x94+a1x+a0 be an identity, where p,q,a95,,a0 are integers. Then smallest positive value of p is


Discussion

No Comment Found