1.

Let `X`be the setconsisting of the first 2018 terms of the arithmetic progression `1, 6, 11 , ddot,`and `Y`be the setconsisting of the first 2018 terms of the arithmetic progression `9, 16 , 23 , ddot`. Then, thenumber of elements in the set `XuuY`is _____.

Answer» Correct Answer - 3748
Here `X={1,6,11, …, 10086}" "[because a_(n)=a+(n-1)d]`
and `Y={9,16,23, …, 14128}`
`X cap Y=[16,51,86, …}`
`t_(n) " of " X cap Y` is less than or equal to 10086
`therefore t_(n)=16+(n-1)35 le 10086 rArr n le 288.7`
`therefore n=288`
`because n (X cap Y) =n(X) +n(Y)-n(X cap Y)`
` therefore n(X cap Y)=2018 +2018+288=3748`


Discussion

No Comment Found

Related InterviewSolutions