1.

Let x be a real-valued random variable with E[X] and E[X2] denoting the mean values of X and X2, respectively. The relation which always holds true is(A) (E[X])2 > E[X2](B) E[X2] ≥ (E[X])2(C) E[X2] = (E[X])2(D) E[X2] > (E[X])2

Answer»

Correct option (B) E[X2] ≥ (E[X])2   

Explanation:

V(x) = E(x2) - {E(x)}2 ≥ 0 i.e., variance cannot be negative

∴ E(x2) ≥ {E(x)}2



Discussion

No Comment Found

Related InterviewSolutions