1.

Let X be a random variable which assumes values x1​, x2​, x3​, x4​ such that  2P(X = x1​) = 3P(X = x2​) = P(X = x3​) = 5P(X = x4​).Find the probability distribution of X.

Answer»

Given 2P(X = x1​) = 3P(X = x2​) = P(X = x3​) = 5P(X = x4​) = k

\(\displaystyle\sum^4_{i=1} p(X = x_i) = 1\)

⇒ P(X = x1​) + P(X = x2​) + P(X = x3​) + P(X = x4​) =1

⇒ \(\frac k2 + \frac k3 + k+\frac k5 = 1\)

⇒ \(\frac{15k + 10 k+ 30k + 6k}{30} = 1\)

⇒ \(k = \frac{30}{61}\)

P(X = x1​) = \(\frac{15}{61}\)

P(X = x2​) = \(\frac{10}{61}\)

P(X = x3​) = \(\frac{30}{61}\)

P(X = x4​) = \(\frac{6}{61}\)



Discussion

No Comment Found

Related InterviewSolutions