Saved Bookmarks
| 1. |
Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P(X = x1) = 3P(X = x2) = P(X = x3) = 5P(X = x4).Find the probability distribution of X. |
|
Answer» Given 2P(X = x1) = 3P(X = x2) = P(X = x3) = 5P(X = x4) = k \(\displaystyle\sum^4_{i=1} p(X = x_i) = 1\) ⇒ P(X = x1) + P(X = x2) + P(X = x3) + P(X = x4) =1 ⇒ \(\frac k2 + \frac k3 + k+\frac k5 = 1\) ⇒ \(\frac{15k + 10 k+ 30k + 6k}{30} = 1\) ⇒ \(k = \frac{30}{61}\) P(X = x1) = \(\frac{15}{61}\) P(X = x2) = \(\frac{10}{61}\) P(X = x3) = \(\frac{30}{61}\) P(X = x4) = \(\frac{6}{61}\) |
|