Saved Bookmarks
| 1. |
Let `veca, vecb` and `vecc` be three vectors having magnitudes 1,1 and 2 resectively. If `vecaxx(vecaxxvecc)+vecb=vec0` then the acute angel between `veca` and `vecc` is |
|
Answer» Correct Answer - `pi//6` `veca xx (vecaxxvecc) +vecb=vec0` `or (veca.vecc)veca-(veca.veca)vecc+vecb=vec0` `or 2 cos theta. veca-vecc+vecb=vec0` (using `|veca|=1,|vecb|=1,|vecc|=2`) `or (2costheta veca-vecc)^(2)=(-vecb)^(2)` `or 4cos^(2)theta.|veca|^(2)+|vecc|^(2)` `-2.2 cos theta.veca.vecc=|vecb|^(2)` `or 4cos^(2)theta+4-8costheta.costheta=1` `or cos^(2)theta-8cos^(2)theta+4=1` `or 4 cos^(2) theta=3` `or cos theta = +- sqrt3//2` for `theta` to be acute , `cos theta= sqrt3/2 Rightarrow theta= pi/6` |
|