Saved Bookmarks
| 1. |
Let `S_(n)=1+2+3+…+n` and `P_(n)=(S_(2))/(S_(2)-1).(S_(3))/(S_(3)-1).(S_(4))/(S_(4)-1)…..(S_(n))/(S_(n)-1)`. Where `nepsilonN(nge2)` `lim_(ntoprop) P_(n)` is equal to |
|
Answer» Correct Answer - 3 `S_(n)=(n)/(2)(n+1),S_(n)-1=((n+2)(n-1))/(2)` `(S_(n))/(S_(n)-1)=(n(n+1))/((n+2)(n-1))=(n)/((n-1))((n+1))/((n+2))` `P_(n)=((2)/(1),(3)/(2)…(n)/(n-1))((3)/(4).(4)/(5)…(n+1)/(n+2))` `P_(n)=((n)/(1))((3)/(n+2))impliesunderset(ntoinfty)(lim)P_(n)=3` |
|