1.

Let P1(x) = x2 + a1x + b1 and P2(x) = x2 + a2x + b2 be two quadratic polynomials with integer coeffcients. Suppose a1 ≠ a2 and there exist integers m ≠ n such that P1(m) = P2(n), P2(m) = P1(n). Prove that a1 - a2 is even.

Answer»

We have 

m2 + a1m + b1 = n2 + a2n + b2 

n2 + a1n + b1 = m2 + a2m + b2. 

Hence 

(a1 - a2)(m + n) = 2(b2 - b1); (a1 + a2)(m - n) = 2(n2 - m2).

This shows that a1 + a2 = -2(n + m). 

Hence 

4(b2 - b1) = a22 - a21

Since a1 + a2 and a1 - a2 have same parity, it follows that a1 - a2 is even.



Discussion

No Comment Found

Related InterviewSolutions