Saved Bookmarks
| 1. |
Let P1(x) = x2 + a1x + b1 and P2(x) = x2 + a2x + b2 be two quadratic polynomials with integer coeffcients. Suppose a1 ≠ a2 and there exist integers m ≠ n such that P1(m) = P2(n), P2(m) = P1(n). Prove that a1 - a2 is even. |
|
Answer» We have m2 + a1m + b1 = n2 + a2n + b2 n2 + a1n + b1 = m2 + a2m + b2. Hence (a1 - a2)(m + n) = 2(b2 - b1); (a1 + a2)(m - n) = 2(n2 - m2). This shows that a1 + a2 = -2(n + m). Hence 4(b2 - b1) = a22 - a21. Since a1 + a2 and a1 - a2 have same parity, it follows that a1 - a2 is even. |
|