1.

Let`f(x)=(log(1+x/a)-log(1-x/b))/x ,x!=0.`Find the value of `f` at `x=0`so that `f`becomes continuous at `x=0`

Answer» `f(x) = (log(1) - log(1))/0 = 0/0`
`f(0) = f(0+h) = f(0-h) `
`l = lim_(x->0) f(x) = lim(x->0) (log(1 + x/a) - log(1-x/b))/x = 0/0`
applying l hospital rule
`l = lim_(x->0) (1/(1+ x/a) *1/a - 1/(1-x/b) (-1/b))/1`
`l = lim_(x->0) ((1/(1+0) *1/a + (1/(1-0) *1/b))/1)`
`l = 1/a + 1/b = (a+b)/(ab)`
so, `f(0) = (a+b)/(ab)`
Answer


Discussion

No Comment Found

Related InterviewSolutions