Saved Bookmarks
| 1. |
Let`f(x)=(log(1+x/a)-log(1-x/b))/x ,x!=0.`Find the value of `f` at `x=0`so that `f`becomes continuous at `x=0` |
|
Answer» `f(x) = (log(1) - log(1))/0 = 0/0` `f(0) = f(0+h) = f(0-h) ` `l = lim_(x->0) f(x) = lim(x->0) (log(1 + x/a) - log(1-x/b))/x = 0/0` applying l hospital rule `l = lim_(x->0) (1/(1+ x/a) *1/a - 1/(1-x/b) (-1/b))/1` `l = lim_(x->0) ((1/(1+0) *1/a + (1/(1-0) *1/b))/1)` `l = 1/a + 1/b = (a+b)/(ab)` so, `f(0) = (a+b)/(ab)` Answer |
|