Saved Bookmarks
| 1. |
Let `f(x)` be defined on `[-2,2]` and be given by `f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)|`. Then find `g(x)`. |
|
Answer» We have `f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):}` or `f(|x|)={(-1",",-2 le |x| le 0),(|x|-1",",0 le |x| le 2):}` `=|x|-1,0 le |x| le 2` ` " " `(As `-2 le |x| lt 0` is not possible) `={(-x-1",",-2 le x le 0),(x-1",",0 lt x le 2):} " (1)" ` Again, `f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):}` or `|f(x)|={(|-1|",",-2 le x le 0),(|x-1|",",0 lt x le 2):}` or `|f(x)|={(1",",-2 le x le 0),(-(x-1)",",0 lt x le 1),(+(x-1)",",1 lt x le 2):} " (2)" ` Therefore, `g(x)=f(|x|)+|f(x)|` can be expressed as `g(x)={((-x-1)+1",",-2 le x le 0),((x-1)+(1-x)",",0 lt x le 1),((x-1)+(x+1)",",1 lt x le 2):}` [Using (1) and (2) ] `={(-x",",-2 le x le 0),(0",",0 lt x le 1),(2(x-1)",",1 lt x le 2):}` |
|