Saved Bookmarks
| 1. |
Let f(x) be a function continuous ∀ x∈R−{0} such that f′(x)<0, ∀ x∈(−∞,0) and f′(x)>0, ∀ x∈(0,∞). If limx→0+f(x)=3, limx→0−f(x)=4 and f(0)=5, then the image of the point (0,1) about the line, y⋅limx→0f(cos3x−cos2x)=x⋅limx→0f(sin2x−sin3x), is |
|
Answer» Let f(x) be a function continuous ∀ x∈R−{0} such that f′(x)<0, ∀ x∈(−∞,0) and f′(x)>0, ∀ x∈(0,∞). If limx→0+f(x)=3, limx→0−f(x)=4 and f(0)=5, then the image of the point (0,1) about the line, y⋅limx→0f(cos3x−cos2x)=x⋅limx→0f(sin2x−sin3x), is |
|