1.

Let f(x) be a function continuous ∀ x∈R−{0} such that f′(x)<0, ∀ x∈(−∞,0) and f′(x)>0, ∀ x∈(0,∞). If limx→0+f(x)=3, limx→0−f(x)=4 and f(0)=5, then the image of the point (0,1) about the line, y⋅limx→0f(cos3x−cos2x)=x⋅limx→0f(sin2x−sin3x), is

Answer»

Let f(x) be a function continuous xR{0} such that f(x)<0, x(,0) and f(x)>0, x(0,). If limx0+f(x)=3, limx0f(x)=4 and f(0)=5, then the image of the point (0,1) about the line, ylimx0f(cos3xcos2x)=xlimx0f(sin2xsin3x), is



Discussion

No Comment Found