Saved Bookmarks
| 1. |
Let `alpha^(k)` when `k=0, 1, 2, 3, 4….253` are `254^(th)` roots of unity then the unity digit of `sum_(k=0)^(253)|z+alpha^(k)z^(2)|^(2)` is ________ (where `z=e^(i((2pi)/7))`) |
|
Answer» Correct Answer - 8 `Sigma|z+alpha^(k)z^(2)|^(2)=Sigma|z|^(2)+Sigma|alpha^(k)||z^(2)|^(2)+0` |
|