1.

Let \( \alpha \) be a root of the equation \( 1+x^{2}+x^{4}=0 \). Then the value of \( \alpha^{1011}+\alpha^{2022}-\alpha^{3033} \) is equal to :

Answer»

Let ω = x2

then α be root of 1 + ω + ω2 = 0, where ω is cubic

Hence, α = √ω 

⇒ α2 = ω 

⇒ α6 = ω3 = 1

Now, α1011 + α2022 - α3033

 = α6 x 168 + 3 + α333 x 6 + 4 - α6 x 505 +3

 = (α6)168α3 + (α6)333α4 - (α6)505α3

 = α3 + α4 - α3 (\(\because \) α6 = 1)

 = α4

 = ω2 (\(\because\) α2 = ω)

 = \(\frac{-1-\sqrt3i}2\)



Discussion

No Comment Found

Related InterviewSolutions