Saved Bookmarks
| 1. |
Let a, r, s, t be non-zero real numbers. Let `P(at^(2),2at),Q(ar^(2),2ar)andS(as^(2),2as)` be distinct points on the parabola `y^(2)=4ax`. Suppose that PQ is the focal chord and lines QR and PK are parallel, where K the point (2a,0). If st=1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate isA. `((t+1)^(2))/(2t^(3))`B. `(a(t+1)^(2))/(2t^(3))`C. `(a(t^(2)+1)^(2))/(t^(3))`D. `(a(t^(2)+2)^(2))/(t^(3))` |
|
Answer» Correct Answer - B The equations of the tangent and normal to `y^(2)=4ax" at "P(at^(2), 2at)" and S"(as^(2), 2as)` are respectively. `ty=x+at^(2)" and "y+sx=2as+as^(2)` or, `y-x/t=at" adn "y=+1/txx=(2a)/t+a/t^(3)` Adding these two equation, we get `2y=at+(2a)/t+a/t^(3)rArry=(a(t^(2)+1)^(2))/(at^(3))` |
|