1.

Let A denotes the set of values of x for which `(x+2)/(x-4) le0` and B denotes the set of values of x for which `x^2-ax-4 le 0`. If B is the subset of A then a cannot take integral value (a) 0, (b) 1 (c) 2 (d) 3

Answer» `(x+2)/(x-4)<=0`
`x in [-2,4)`
`A in [-2,4)`
`x^2-4<=0`
`f(-2)*f(4)>=0`
`(4+2a-4)(16-4a-4)>=0`
`2a(12-4a)>=0`
`(4a-12)(2a)<=0`
`a in[0,3)`.


Discussion

No Comment Found