Saved Bookmarks
| 1. |
Let a, b, c, d be numbers in set {1, 2, 3, 4, 5, 6} such that the curves `y=2x^(3)+ax+b` and `y=2x^(3)+cx+d` have no point in common. The maximum possible value of `(a-c)^(2)+b-d` is- |
|
Answer» Correct Answer - B `y = 2x^(3)+ax+b" "y=2x^(3)+cx+d` No solution `2x^(3)+ax+bne2x^(3)+cx+d` `ax+bnecx+d" for no real x"` `(a-c)xned-b` `xne(d-b)/(a-c)" "a = c"` `(a-c)^(2)+(b-d)=0+6-1=5` |
|