1.

Let `2 x^2 + y^2 - 3xy = 0` be the equation of pair of tangents drawn from the origin to a circle of radius 3, with center in the first quadrant. If A is the point of contact. Find OA

Answer» `2x^2+y^2-3xy=0`
`y^2-2xy-xy+2x^2=0`
`y(y-2x)-x(y-2x)=0`
`(y-x)(y-2x)=0`
`y=x` or `y=2x`
`tantheta=|(2-1)/(1+2)|=1/3`
`(2tantheta)/(1-tan^2theta)=1/3`
`6tantheta=1-tan^2theta`
`tan^2theta+6tantheta+1=0`
`tantheta=(-6pmsqrt32)/2`
`=-3pm2sqrt2`
`=-3-2sqrt2,|-3+2sqrt2|`
`tantheta=(AC)/(OA)`
`OA=3/(3-2sqrt2)*(3+2sqrt2)/(3+2sqrt2)`
`OA=3(3+2sqrt2)`.


Discussion

No Comment Found

Related InterviewSolutions