1.

Integrate : ∫(√tan x + √cot x) dx, for x ∈ [0,π/2]

Answer»

∫(√tan x + √cot x) dx, for x ∈ [0,π/2]

∫(√(sin x/cos x) + √(cos x/sin x)) dx, for x ∈ [0,π/2]

∫(sin x + cos x)/√(sin x.cos x) dx, for x ∈ [0,π/2]

√2∫(sin x + cos x)/√(2sin x.cos x) dx, for x ∈ [0,π/2]

√2∫(sin x + cos x)/√(1 - (1 - 2sin x.cos x)) dx, for x ∈ [0,π/2]

√2∫(sin x + cos x)/√(1 - (sin x - cos x)2) dx, for x ∈ [0,π/2]

Put sin x - cos x = t

(cos x + sin x) dx = dt

When x = 0, t = 1 and when x = π/2, t = 1

So, ∫(√tan x + √cot x) dx, for x ∈ [0,π/2]

√2∫(dt/√(1 - t2), for t ∈ [-1,1]

2.[sin-1 t], for t ∈ [-1,1]

= √2[sin-1 1 - sin-1 (-1)] = 2((π/2) - (-π/2))

2.π



Discussion

No Comment Found